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Abstract

We present a statistically principled and computationally efficient method for quantify-
ing local clusters of target proteins around reference proteins in three–dimensional cryo-EM
data. Our framework (i) handles an arbitrary number of protein types, (ii) provides analytic
expectations under a complete spatial randomness (CSR) null model or any Monte Carlo
surrogate, (iii) outputs z-scores, confidence intervals, and p-values, and (iv) scales to millions
of points via spatial indexing. In our analysis, this method did not yield statistically signif-
icant evidence of local clustering, suggesting that the observed distributions are consistent
with spatial randomness.

1 Introduction

Recent single-particle Cryo-EM experiments generate cloud-like sets of 104–106 protein coor-
dinates per sample. Detecting protein–protein interactions from such data reduces to testing
whether specific target types occur unusually often in the neighbourhood of reference types.
We formalize this as a multitype marked point-process problem and build a hypothesis-testing
pipeline around efficient neighbor counts.

2 Data model and notation

First working with N types of proteins, which we assume to be point particles whose points are
located at the protein’s centroid. We will denote the protein type by τk where k indexes the
protein type. We will also define the 3-Dimensional set of coordinates for a given protein to be
x. Given this, the set of all protein coordinates along with their indexed type is:

P =
{
(x, τk) ∈ R3 × {1, . . . , N}

}
From here, our procedure for determining clustering between two arbitrary protein types i, j ∈
{1, ..., N} is as follows:
Take i and j from the set of all possible protein types and define a reference set

Ri = {x | τk = i}

and a target set
Tj = {x | τk = j}

along with a set of radii of interest for binning

R = {r1, . . . , rL}

We can define our neighbor-counting function. Characterizing how many reference proteins fall
within a radius of r of a given target protein y ∈ Tj :

C
(i,j)
y (r) =

∑
x∈Ri

1
(
∥x− y∥ ≤ r

)
. (1)
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Since we are mainly focused on local clustering between one or two particles, we define a function
that counts the target proteins that have exactly m particles within a given radius r

H(i,j)
m (r) =

∑
y∈Tj

1
(
C

(i,j)
y (r) = m

)
(2)

This is the function that is used to determine the experimental data from null models. Under
Complete Spatial Randomness with reference particle density ρi. The neighbor-count for any
given volume V (r) will follow a poisson distribution with parameter λ as:

λ
(i,j)
CSR(r) := λij(r) = ρj V3(r), given V3(r) =

4π

3
r3.

We can then define (2) in terms of the poisson PDF

E[H(i,j)
m (r)] = |Tj |

(λij(r))
me−λij(r)

m!

When analytic assumptions fail (aperiodic boundry conditions) we approximate E[H(i,j)
m (r)] and

its variance from the expectation through Monte-Carlo methods. In our model, this numerical
approximation is not analytic. And proves to be computationally expensive. Optimization of
this problem will be covered in later sections.

Dimensionality Note. An important consideration is the dimensionality of the spatial anal-
ysis. Although experimental CryoEM data is often visualized as two-dimensional projections,
the underlying protein distributions are inherently three-dimensional. Early analyses using 2D
projections of particle positions showed consistent inflation in clustering statistics, particularly
in Ripley’s K-function—due to artificial compression of distances in the projection plane. These
artifacts manifest as uniformly elevated neighbor counts and can lead to false rejection of the
Complete Spatial Randomness (CSR) hypothesis. To avoid this geometric bias, all analysis
presented in this work is conducted directly in R3 using the full 3D centroid coordinates of the
protein particles.

3 Statistical Method

For each pair (i, j) and radius r we compute the z–score

zij(r;m) =
µ̂ij(r)− µnull

ij (r)

σnull
ij (r)

, (3)

Using the formula(s):

µij(r) = E[H(i,j)
m (r)], σnull

ij (r) =

√∑
S
k=1(H

(i,j)
m (r)− µnull

ij (r))2

S − 1

Here null stands for the Monte-Carlo surrogate, and the carat denotes the value derived from
experimental data. Assuming approximate normality (justified by the Lyapunov CLT because
counts are sums of weakly dependent Bernoulli’s in dilute samples) the two-sided p-value is
p = 2Φ

(
−|z|

)
. A 100(1− α)% confidence interval for the null mean is[

µnull−zα/2 σnull, µnull+zα/2 σ
null

]
.

This allows for us to create a confidence envelope for any m and r of our choosing. These
statistics laid out in (3) are directly based on using Monte-Carlo to sample from the underlying
distribution. Hence the sample variance being used. In the next section we will cover how to
do this sampling.
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4 Neighbour-count algorithm

Input: reference set Ri, target set Tj , radii R
Output: {µ̂ij(r)}r∈R
Build a KD-tree K on Tj ;
Initialise C[r]← 0 (∀r ∈ R);
foreach x ∈ Ri do

foreach r ∈ R do
C[r] += |QueryBall(K,x, r)|;

end

end
foreach r ∈ R do

µ̂ij(r)← C[r]/|Ri|;
end

Algorithm 1: Mean neighbour count for one (i, j) pair

Complexity. Let ni = |Ri|, mj = |Tj |, and k be the average number of neighbours returned.

• KD-tree construction: O(mj logmj).

• One radius query: O(logmj + k).

• Total for all radii: O
(
niL(logmj + k)

)
.

By reusing the same tree for every reference type, the full multitype run costs

O
(∑

j

mj logmj + L log
(∑

j

mj

)∑
i

ni + L
∑
i,j

ni kij

)
,

which is near-linear in input size when kij stays bounded.
The näıve double loop visible in the first prototype (for ref in [’C3’, ’Cx’, ’CP’]: ...)

is O(nimjL) and becomes prohibitive for N ≳ 105.

5 Results

Using the neighbour-counting statistic, we compared experimental protein distributions to a
Monte Carlo null model of complete spatial randomness (CSR) for all protein–protein type pairs
and a range of search radii. Across all tested combinations, the observed counts fell within the
95% confidence envelope of the null distribution, indicating no statistically significant deviations
from CSR at the measured length scales. This result suggests that, within the resolution limits
of the data and the sensitivity of our current statistical framework, there is no evidence of strong
protein–protein interactions.

The two panels in Figures 1 and 2 summarise the main findings. Figure 1 presents the
fully processed results, including mask-based spatial restrictions, isotropic edge correction, and
multiple-testing control. All observed neighbour counts remain close to the null expectation,
with fluctuations consistent with Monte Carlo sampling noise. Figure 2 shows the same analysis
before spatial filtering and statistical corrections, where apparent deviations from CSR can be
seen; these disappear after applying the full set of methodological controls, underscoring their
importance in avoiding false positives.

While this study demonstrates the capabilties of the current CSR-based pipeline for detect-
ing strong clustering between protein types, several variations of the method presented remain
for future work. These include the adoption of log-spaced radius grids to better balance small
and large scale sensitivity, additional replicate stability tests to quantify Monte Carlo variance
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across parameter regimes, and more refined multiple-testing correction strategies tailored to
spatial point processes.

Figure 1: Filtered interaction counts compared to null expectations. Shaded regions represent
the 95% confidence envelope from Monte Carlo simulations under CSR. All measured counts
remain within the envelope, consistent with random spatial arrangement.

Figure 2: Unfiltered interaction counts prior to edge correction and multiple-testing control.
Deviations outside the 95% confidence envelope are visible here but are removed after applying
the full correction pipeline.

4



6 Conclusion

We have developed and applied a statistically principled neighbour-counting framework to three-
dimensional CryoEM point-pattern data, enabling direct comparison of experimental protein
distributions to CSR-based null models. Within the scope of our current dataset and analysis
pipeline, no significant protein–protein clustering was detected, implying that any interactions
at this spatial scale are either absent or below the detectable threshold of our method.

These results provide a rigorous statistical baseline for future interaction studies. The
modular structure of the framework readily accommodates refinements. Such as log-spaced
radius sampling, higher-order interaction tests, and alternative null models—that may enhance
sensitivity to subtler effects. As a result, the approach presented here not only establishes
current limits on detectable clustering but also sets the stage for improved spatial statistics in
high-resolution structural biology.
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